A Platform for the Discovery of New Macrolide Antibiotics

Ian B. Seiple, Ziyang Zhang, Pavol Jakubec, Audrey Langlois-Mercier, Peter M. Wright, Daniel T. Hog, Kazuo Yabu, Senkara Rao Allu, Takehiro Fukuzaki, Peter N. Carlsen, Yoshiaki Kitamura, Xiang Zhou, Matthew L. Condakes, Filip T. Szczypiński, William D. Green & Andrew G. Myers

Nature, 2016, 533, Page 338

Presented by Alexander Chatterley

15th of October 2016

The Myers Group

- Andrew Myers graduated from MIT 1981 with Bachelors of science. Graduate student and a brief post doc with E. J. Corey. Began independent career at Caltech (1986) then moved to Harvard in 1998.
- Comprised of 17 members (6 grad students/8 post docs/3 staff).
- Research focuses include synthesis of complex natural antibiotics and the development of methodology to aid in this.

Antibiotics

Antibiotics are one of the major corner stones of modern medicine.

- ❖ Early reports of using mould as a poultice in pre-BC times to treat open wounds by applying moulds.
- Use became more refined throughout history, particularly in the late renaissance through to early industrial. For example the use of mould by apothecaries in England to treat injuries.
- ❖ First anti-biotic isolated by British biologist Sir Andrew Fleming in 1928, arguably began the modern anti-bacterial era.
- ❖ First chemical synthesis of penicillin in 1957 by Dr Edward Sheehan (supervisor to E. J. Corey).

First synthesis of Pencillin

Antibacterial Apocalypse

Antibiotic resistance is rapidly becoming a global health concern.

- Over use of antibiotics in people and animals has caused multiple strains of drug resistance bacteria to evolve.
- No new class of antibiotics have been discovered in the 1980's.
- Antibiotic research while crucial, is not attractive to the private sector due to the business model.

Classes of antibiotics

There are several classes of antibiotics:

- ❖ Penicillin's
- Aminoglycosides
- Carbapenems
- Cephalosporin's
- Fluoroquinolones
- Sulphonamides
- Marcolides

Erythromycin A

Macrolide Antibiotics

Erythromycin, one of the earliest macrolides was isolated from Philippine soil samples in 1949.

- Characterised by their large macrocyclic ring structure, Usually 14, 15 or 16 membered.
- Active against Gram-positive and to limited Gram-negative bacteria.
- ❖ Binds reversibly to the P site on the 50S subunit of the bacterial ribosome. This inhibits protein synthesis resulting in bacterial cell death.

Macrolide synthesis

First total synthesis of Erythromycin A was completed by Woodward in 1981.

- ❖ 0.089% total yield,
- ❖ 52 steps total.
- 48 students worked on it.

Total synthesis of Erythronolide A and B carried out by Corey in 1978/9.

Again, these were very complex synthesis, involving multiple students (including K.C. Nicolaou).

Erythromycin A

Erythronolide

This Paper

Meyers group embarked on a quest to synthesise a library of macrolides as a platform for the discovery of new antibiotics.

They divided this approach into three classes:

14-Membered Azaketolides 1

14-Membered Azaketolides 2

15-Membered Azaketolides

10 Steps - 43% or 33%

7:1 Mixture of epimers at C2

14 Membered Ketolides

Alex Chatterley @ Wipf Group Page 13 of 16 11/12/2016

Library construction

Microbiological testing

	Species	Strain description	Erythro	Azithro	Telithro	Solithro	100573	100563	100490	11563	20707	22391	21397	20919	11453	11044	21887	21760
Т	S. aureus	ATCC 29213	0.5	1	0.125	0.125	0.06	≤0.03	≤0.03	0.06	0.5	0.25	4	0.25	1	1	8	0.5
	S. aureus	BAA-977; iErmA	>256	>256	0.06	≤0.03	0.06	0.06	0.03	0.06	0.5	0.5	4	0.5	1	1	8	1
Š	S. aureus	MP513; MRSA; cErmA	>256	>256	256	>64	16	16	64	64	>64	64	64	64	>64	>64	>64	64
Sit	S. aureus	NRS384; MRSA; MsrA	64	128	0.125	0.25	0.06	0.125	0.06	0.125	1	1	8	0.5	2	2	16	4
ă.	S. pneumoniae	ATCC 49619	0.03	0.06	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	0.06	≤0.03	≤0.03	≤0.03	0.06	≤0.03
Gram	S. pneumoniae	UNT-042; ErmB/MefA	>256	>256	0.125	0.25	≤0.03	≤0.03	≤0.03	≤0.03	2	0.125	8	0.5	2	8	1	1
ō	S. pyogenes	ATCC 19615	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	≤0.03	0.06	≤0.03	≤0.03	≤0.03	0.06	≤0.03
- 1	E. faecalis	ATCC 29212	1	4	≤0.03	≤0.03	0.03	0.03	0.03	≤0.03	0.125	0.06	0.5	0.25	0.125	0.125	0.5	0.06
	E. faecalis	UNT-047; VRE; ErmB	>256	>256	16	32	1	2	2	4	>64	32	64	>64	>64	64	>64	>64
è	H. influenzae	ATCC 49247	4	2	2	4	2	2	2	2	2	4	8	4	4	8	16	4
ati	A. baumannii	ATCC 19606	16	32	4	16	2	8	8	4	4	4	16	16	4	32	32	32
e)	K. pneumoniae	ATCC 10031	4	2	4	4	2	8	4	4	2	4	8	16	2	8	8	4
Ē	E. coli	ATCC 25922	64	4	16	32	8	16	16	16	4	8	32	4	8	64	16	8
3g	P. aeruginosa	ATCC 27853	64	64	64	64	16	32	64	32	64	64	64	64	>64	>64	>64	64

- Screened 305 compounds against a panel of pathogens comprising of Gram + and Gram stains.
 - * 83% of the candidates showed a MIC of less than 4μg ml⁻¹ against WT *S. pneumoniae*.
- Most promising candidates were screened against an expanded panel that had developed various antibacterial resistance strategies.
 - FSM-100573 and 100563 showed were more active than any current clinical macrolide against mutated *S. pneumoniae*. and *Pseudomonas aeruginosa*.

Conclusions

In conclusion the Meyers group have made several contributions with this publication:

- Designed and executed several efficient and highly convergent routes to three macrolide skeletons.
- ❖ Further functionalised and furnished these skeletons to generate a synthetic library of 300+ macrolides.
- Demonstrated that these candidates represent possible avenues to new antimicrobial agents in the war against drug resistant bacteria.